2009. Kwang-il Lim and John Yin. "Computational fitness landscape for all gene-order permutations of an RNA virus." / PLoS Computational Biology (Top 10% journal)

February 1, 2009

How does the growth of a virus depend on the linear arrangement of genes in its genome? Answering this question may enhance our basic understanding of virus evolution and advance applications of viruses as live attenuated vaccines, gene-therapy vectors, or anti-tumor therapeutics. We used a mathematical model for vesicular stomatitis virus (VSV), a prototype RNA virus that encodes five genes (N-P-M-G-L), to simulate the intracellular growth of all 120 possible gene-order variants. Simulated yields of virus infection varied by 6,000-fold and were found to be most sensitive to gene-order permutations that increased levels of the L gene transcript or reduced levels of the N gene transcript, the lowest and highest expressed genes of the wild-type virus, respectively. Effects of gene order on virus growth also depended upon the host-cell environment, reflecting different resources for protein synthesis and different cell susceptibilities to infection. Moreover, by computationally deleting intergenic attenuations, which define a key mechanism of transcriptional regulation in VSV, the variation in growth associated with the 120 gene-order variants was drastically narrowed from 6,000- to 20-fold, and many variants produced higher progeny yields than wild-type. These results suggest that regulation by intergenic attenuation preceded or co-evolved with the fixation of the wild type gene order in the evolution of VSV. In summary, our models have begun to reveal how gene functions, gene regulation, and genomic organization of viruses interact with their host environments to define processes of viral growth and evolution.




PMID: 19197345  PMCID: PMC2627932  DOI: 10.1371/journal.pcbi.1000283

Share on Facebook
Share on Twitter
Please reload

Recent Posts
Please reload

© 2023 by Kathy Schulders. Proudly created with Wix.com  

  • Grey Twitter Icon